Что такое правильная фигура

Что такое правильная фигура

Какое название лежит в основе

Какое название лежит в основе: Обратите внимание на тот, факт что в названии любого многогранника есть слово-основа.

Название

Слово-основа

тетраэдр
тетра — четыре (лат.) окта — восемь (лат.) гекса — шесть (лат.)

додека — двенадцать (лат.)

икосаэдр икоси — двадцать (лат.)

Из каких геометрических фигур можно составить

Все многогранники Платона можно представить в виде комбинации правильных многоугольников

Свойства Платоновых тел

Двугранный угол тетраэдра.

Две смежные грани тетраэдра стыкуются друг с другом под углом 70,53°.

В одной вершине тетраэдра сходятся три треугольные грани. Трёхмерный угол между тремя гранями (телесный угол тетраэдра при вершине) Ω = 0,55.

Двугранный угол октаэдра.

Две смежные грани октаэдра стыкуются друг с другом под углом 109,47°.

В одной вершине октаэдра сходятся четыре треугольные грани. Трёхмерный угол между четырьмя гранями (телесный угол октаэдра при вершине) Ω = 1,36.

Двугранный угол куба.

Две смежные грани куба стыкуются друг с другом под углом 90°.

В одной вершине куба сходятся три четырёхугольные грани. Трёхмерный угол между тремя гранями (телесный угол куба при вершине) Ω = 1,57.

Двугранный угол икосаэдра.

Две смежные грани икосаэдра стыкуются друг с другом под углом 138,19°.

В одной вершине икосаэдра сходятся пять треугольных граней. Трёхмерный угол между пятью гранями (телесный угол икосаэдра при вершине) Ω = 2,63.

Двугранный угол додекаэдра.

Две смежные грани додекаэдра стыкуются друг с другом под углом 116,57°.

В одной вершине додекаэдра сходятся три пятиугольные грани. Трёхмерный угол между тремя гранями (телесный угол додекаэдра при вершине) Ω = 2,96.

Размеры многогранников

Чтобы создать коллекцию многогранников, нам будет необходимо придерживаться определенных условий, так размеры будут сопоставимы и модели можно легко сравнить друг с другом.

Один из возможных вариантов это создавать модели, вписываемые в сферу заданных размеров.

Стороны многоугольников для этого должны иметь следующие пропорции:

Вот как будут выглядеть в этом случае все 5 правильных многогранников.

Здесь вы можете скачать развертки для создания всех пяти Платоновых тел с размерами, позволяющими поместить каждое геометрическое тело внутрь сферы диаметром 100 мм:

Другой вариант это задать единую длину стороны для всех многоугольников из которых будет собрана модель. Вот каковы пропорции многоугольников имеющих единую длину стороны:

А вот как будет выглядеть коллекция многогранников — Платоновых тел, собранная из многоугольников с единой длиной стороны:

Здесь вы можете скачать развертки для создания всех пяти Платоновых тел с размерами, позволяющими построить каждое геометрическое тело с длиной стороны 50 мм:

Готовый набор для сборки

Вы можете изготовить все пять моделей Платоновых тел воспользовавшись деталями для сборки из набора "Волшебные грани".

Для удобства сборки все модели имеют рёберную конструкцию, что позволяет собрать их даже начинающему "математику".

Размеры подобраны так, что любой из многогранников может быть вписан в сферу диаметром 110 мм.

Вращение всех правильных многогранников

Сборка многогранников их набора

Какое название лежит в основе

Какое название лежит в основе: Обратите внимание на тот, факт что в названии любого многогранника есть слово-основа.

Название

Слово-основа

тетраэдр
тетра — четыре (лат.) окта — восемь (лат.) гекса — шесть (лат.)

додека — двенадцать (лат.)

икосаэдр икоси — двадцать (лат.)

Из каких геометрических фигур можно составить

Все многогранники Платона можно представить в виде комбинации правильных многоугольников

Читайте также:  Материал заменитель кожи

Свойства Платоновых тел

Двугранный угол тетраэдра.

Две смежные грани тетраэдра стыкуются друг с другом под углом 70,53°.

В одной вершине тетраэдра сходятся три треугольные грани. Трёхмерный угол между тремя гранями (телесный угол тетраэдра при вершине) Ω = 0,55.

Двугранный угол октаэдра.

Две смежные грани октаэдра стыкуются друг с другом под углом 109,47°.

В одной вершине октаэдра сходятся четыре треугольные грани. Трёхмерный угол между четырьмя гранями (телесный угол октаэдра при вершине) Ω = 1,36.

Двугранный угол куба.

Две смежные грани куба стыкуются друг с другом под углом 90°.

В одной вершине куба сходятся три четырёхугольные грани. Трёхмерный угол между тремя гранями (телесный угол куба при вершине) Ω = 1,57.

Двугранный угол икосаэдра.

Две смежные грани икосаэдра стыкуются друг с другом под углом 138,19°.

В одной вершине икосаэдра сходятся пять треугольных граней. Трёхмерный угол между пятью гранями (телесный угол икосаэдра при вершине) Ω = 2,63.

Двугранный угол додекаэдра.

Две смежные грани додекаэдра стыкуются друг с другом под углом 116,57°.

В одной вершине додекаэдра сходятся три пятиугольные грани. Трёхмерный угол между тремя гранями (телесный угол додекаэдра при вершине) Ω = 2,96.

Размеры многогранников

Чтобы создать коллекцию многогранников, нам будет необходимо придерживаться определенных условий, так размеры будут сопоставимы и модели можно легко сравнить друг с другом.

Один из возможных вариантов это создавать модели, вписываемые в сферу заданных размеров.

Стороны многоугольников для этого должны иметь следующие пропорции:

Вот как будут выглядеть в этом случае все 5 правильных многогранников.

Здесь вы можете скачать развертки для создания всех пяти Платоновых тел с размерами, позволяющими поместить каждое геометрическое тело внутрь сферы диаметром 100 мм:

Другой вариант это задать единую длину стороны для всех многоугольников из которых будет собрана модель. Вот каковы пропорции многоугольников имеющих единую длину стороны:

А вот как будет выглядеть коллекция многогранников — Платоновых тел, собранная из многоугольников с единой длиной стороны:

Здесь вы можете скачать развертки для создания всех пяти Платоновых тел с размерами, позволяющими построить каждое геометрическое тело с длиной стороны 50 мм:

Готовый набор для сборки

Вы можете изготовить все пять моделей Платоновых тел воспользовавшись деталями для сборки из набора "Волшебные грани".

Для удобства сборки все модели имеют рёберную конструкцию, что позволяет собрать их даже начинающему "математику".

Размеры подобраны так, что любой из многогранников может быть вписан в сферу диаметром 110 мм.

Вращение всех правильных многогранников

Сборка многогранников их набора

Общая характеристика

Предметы в геометрическом изображении состоят из отдельных частей: точек, линий, лучей, отрезков и вершин. Отдельно взятый предмет имеет свое предназначение.

Основные понятия о составляющих

Когда все точки фигуры принадлежат одной плоскости, она является плоской. К ней относятся отрезок, прямоугольник. Существуют геометрические объекты, не являющиеся разновидностью плоскости, — куб, шар, пирамида, призма.

Минимальным объектом геометрии является точка. Определение того, какой она должна быть известно из школьного математического курса. Учебник характеризует ее как объект, не имеющий измерительных особенностей. Точка (Т) не содержит стандартных свойств: высоты, длины, радиуса, важным является только ее расположение. Обозначается числом или большой заглавной буквой. Например, точка называется D, E, F или 1, 2, 3. Несколько точек бывают отмечены разными цветами или буквами для удобного различия.

Читайте также:  Как удалить канцелярский клей с одежды

Линия состоит из множества точек. Измеряется длина этого составляющего объекта и обозначается маленькими буквами (abc).

Виды линий:

  • Замкнутая. Когда в одной точке расположена начальная и конечная часть направления. Из незамкнутой линии получают обратный вариант.
  • Разомкнутая. Начало и окончание не соединяются.
  • Прямая. Обозначается буквой а или b.
  • Ломаная. Заключается в соединенных отрезках не под углом 180 градусов. Линия обозначается перечислением всех вершин.
  • Кривая.Отличная от прямой линии.

Задания из школьной программы кажутся школьникам скучными, неинтересным, но эти азы являются основой составления фигур простых и более сложных.

Существуют подвиды прямой линии: пересекающиеся, содержащие общую точку и когда две прямые линии соединяются в одной точке.

Луч в математике представляет часть прямой, имеющей начальную точку, но не имеющую конец. Это продолжение в одну сторону. Если Т разделяет линию пополам — получается два луча. Лучевые линии совпадают, когда расположены на одной прямой, начинаются в точке или направляются в одну сторону.

Отрезок представляет составную часть прямой, ограниченной двумя точками — она имеет начало и конец, поэтому измеряется. Длина отрезка представляет расстояние между его первой и последней точками. Через одну Т проводится бесконечное число линий, а через две — кривые и только одна прямая.

Стандартные объекты

К основным фигурам геометрии на плоскости относятся прямоугольник, треугольник, квадрат, многоугольник и круг. Прямоугольник выглядит как фигура, состоящая из четырех сторон и четырех прямых углов (ПУ). Противоположные стороны равны между собой. В математике прямоугольник обозначается четырьмя латинским заглавными буквами. Все ПУ расположены под 90 градусов. Прямоугольник с равными, одинаковыми сторонами называется квадратом.

Фигура, имеющая 3 стороны и столько же углов (вершин), называется треугольником. Существует классификация этой фигуры по типу У.

Виды треугольника в зависимости от угла (У):

  • Прямой. Один У будет прямым, два — менее 90 градусов.
  • Острый. Градусная мера больше 0, но меньше 90 гр.
  • Тупой. Один У тупой, два других будут острыми.

Геометрическая фигура с углами разной формы называется многоугольником. Его вершины представлены точками, соединяющими отрезками.

Радиус круга — промежуток от середины окружности до любой ее точки. Диаметр — это отрезок, соединяющий две точки окружности, проходящий через ее середину.

Параллелепипед — это призма, у которой основанием является параллелограмм. Когда все ребра параллелепипеда равны, получается куб.

Многогранная фигура, у которой одна грань является многоугольником, а остальные грани (боковые) — треугольники с общей вершиной, называется пирамидой.

Семиугольник (гептагон) — это многоугольник с 7 углами. Многоугольник представляет замкнутую ломанную линию.

Основные фигуры перечислены, но геометрия включает еще сложные объекты, использующиеся в различных областях жизни.

Сложные модели

В сложной геометрии выделяют фигуры с пространственным, плоским и объемным наполнением. Существует понятие геометрического тела, 3D-моделирование и проекция.

Определение тела и пространства

Геометрическое тело (ГТ) представляет часть пространства, отделенное замкнутой поверхностью наружной границы. Это понятие относится к компактному множеству точек, а две из них соединяют отрезком, проходящим внутри границы тела. Внешняя граница ГТ является его гранью, которых может быть несколько. Множество плоских граней определяет вершины и ребра ГТ. Все геометрические тела делятся на многогранники и тела вращения.

Тела вращения — объемные тела, образующиеся из-за вращения плоской фигуры, ограниченной кривой, вокруг оси. Эта ось расположена в той же плоскости. При вращении контуров фигур вокруг собственной оси возникает поверхность вращения, а если вращать заполненные контуры — возникают объекты (шар).

Читайте также:  Сборка алмазной мозаики

Шар представляет множество точек, расположенных от данной точки на небольшом пространстве. Точка является центром шара, а расстояние ограничено радиусом.

В сферу геометрии входят плоские (двухмерные) и объемные пространственные фигуры (трехмерные).

Плоские фигуры представляют точка, круг, полукруг, окружность, овал, прямоугольник, квадрат, луч, ромб, трапеция.

Существуют двухмерные фигуры (2D), представленные углом, многоугольником, четырехугольником, окружностью, кругом, эллипсом и овалом. Объекты 3D выделены двугранным или многогранным углом. Среди них известны призма, параллелепипед, куб, антипризма, пирамида, тетраэдр икосаэдр, бипирамида, геоид, эллипсоид, сфера шар и другие. Плоские фигуры изучает планиметрия, а объемные — стереометрия.

Объемные фигуры:

Конус образуется из треугольника с прямыми углами, при вращении его вокруг одного из катетов. Тороид возникает из замкнутой плоскости (окружности), вращающейся вокруг прямой и не пересекающей ее. Многогранник называется полиэдр, представляет замкнутую поверхность, состоящую из многоугольников.

Виды многогранников:

  • Тетраэдер (четырехгранник). Это правильный треугольник.
  • Куб (гексаэдр). Грани являются квадратом.
  • Октаэдр. Имеется шесть вершин и восемь граней.
  • Икосаэдр. Равносторонние треугольники являются гранями. Имеется 12 граней и 12 вершин.
  • Додекаэдр. Правильные шестиугольники, имеется 12 граней, 20 вершин.

В школьной программе имеются специальные разделы геометрии, позволяющие распределить знания и не путать их в будущем. Это касается плоских, объемных фигур — одни изучает стереометрия, другие планиметрия.

Познавательные игрушки детям

Геометрия является наукой, которой можно знакомить детей с раннего возраста. Лучше распечатать картинки, геометрические фигуры для детей, затем нарисовать их вместе на чистом листе. Малышу первого года подобное занятие будет не очень интересным и понятным, а у дошкольника вызовет интерес, особенно если объекты изучения будут разноцветными или в необычном исполнении.

Основной материал для обучения детей:

  • Яркие карточки с основными фигурами, формами. Шаблоны будут наглядным пособием перед школой.
  • Раскраски, прописи, рабочая тетрадь. На каждой странице тетради представлены простейшие графические упражнения и задания. Выполняя их, малыш познакомится с геометрией и узнает названия фигур.
  • Специальная детская литература.

Увлекательные, забавные, задорные стихи «Веселая геометрия для малышей» помогут детям быстро познакомиться и усвоить много важной информации о фигурах и размерах предметов. Веселые стишки помогут юному читателю соотнести малопонятные геометрические знания с обыденными предметами обихода. Например, в женской юбке представлена трапеция, в блюдце— круг, а в трубе цилиндр.

Учить детей начинают с плоских фигурок, сделанных из цветной бумаги или фетра. Не нужно ограничивать ребенка в фантазии, ведь он различает фигуры по цветам и форме — треугольник, овал, круг, ромб, квадрат. Увлекательным будет занятие с использованием сортеров, пирамидок из различных геометрических объектов.

Ближе к дошкольному возрасту переходят на объемные фигуры, кубики, конусы, кольца и цилиндры. В школьном возрасте знания накопятся, и дети будут осознанно различать равнобедренный, равносторонний треугольник, три понятия: луч, отрезок, окружность.

Раздел математики геометрия изучает пространственные отношения и формы. Фигура как понятие, рассмотренное во всех учебниках геометрии, является пространственной формой.

Геометрию можно обнаружить везде — в любых окружающих предметах. Это современные здания, архитектурные строения, формы, космическая станция, интерьер квартиры, подводные лодки.

Математические знания являются профессионально важными для современных специальностей: дизайнеров и конструкторов, рабочих и ученых. Без знания основ геометрии невозможно построить здание или отремонтировать квартиру.

Ссылка на основную публикацию
Что такое демисезонное пальто
Попробуем объяснить, что такое демисезонное пальто, чтобы вы поняли сами и смогли объяснить другим. Это верхняя одежда, пошитая из теплых...
Что наносится сначала консилер или тональный крем
Так как девушки каждый день хотят выглядеть сногшибательно и начинают они это делать уже с ранних лет. Но так в...
Что наносят сначала консилер или тональный крем
Так как девушки каждый день хотят выглядеть сногшибательно и начинают они это делать уже с ранних лет. Но так в...
Что такое депиляция глубокое бикини
Зона бикини — самая деликатная и чувствительная. Волосы в этом месте выполняют ряд важных функций. Среди них защита от инфекций,...
Adblock detector